Improvement of an existing solar powered absorption cooling system by means of dynamic simulation and experimental diagnosis
F. Palacín,
C. Monné and
S. Alonso
Energy, 2011, vol. 36, issue 7, 4109-4118
Abstract:
This paper focuses on the validation of a dynamic simulation model used to describe the performance of an existing solar cooling installation located in Zaragoza (Spain). The dynamic model has been developed under the simulation environment TRNSYS. The aim of this simulation model is to dispose of a tool in order to use it to evaluate different energy improvement actions in a real solar cooling installation. This solar cooling installation has been monitored and analyzed since 2007. The COP of this experimental solar cooling system presents a great influence from its heat rejection sink, a dry cooling tower. Once the model was validated with the experimental data obtained from the real installation, it was used to predict the chiller performance with a new geothermal sink, which started to operate in 2009. The present work describes the design and validation model process, as well as the comparison between the model results and the monitoring ones with the geothermal heat rejection system.
Keywords: Solar energy; Absorption cooling; Solar cooling; Heat rejection sink (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211002842
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:7:p:4109-4118
DOI: 10.1016/j.energy.2011.04.035
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().