EconPapers    
Economics at your fingertips  
 

Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory

Jiangfeng Guo and Xiulan Huai

Energy, 2012, vol. 41, issue 1, 335-343

Abstract: Based on the entransy dissipation theory, the multi-parameter optimization design of recuperator is conducted in an Isopropanol–Acetone–Hydrogen (IAH) chemical heat pump system. The performance of the heat pump system can be improved significantly through the multi-parameter optimization, when the main operation parameters of chemical heat pump remain unchanged. When the main operation parameters of chemical heat pump and the heat transfer area of recuperator remain unchanged, the heat transfer rate of recuperator, the high-temperature heat released from the exothermic reactor, and the coefficient of performance (COP) and exergy efficiency of IAH heat pump system greatly increase while the compressor power decreases remarkably as entransy dissipation number decreases. This is done only by optimizing the combination of design parameters of recuperator taking entransy dissipation number as the objective function under certain constraint conditions, and the cost is no more than the low-temperature waste heat having no practical value.

Keywords: Recuperator; Entransy dissipation; Heat exchanger; Genetic algorithm; Isopropanol–Acetone–Hydrogen chemical heat pump (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212001983
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:41:y:2012:i:1:p:335-343

DOI: 10.1016/j.energy.2012.03.007

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:335-343