EconPapers    
Economics at your fingertips  
 

Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid

Sébastien Declaye, Sylvain Quoilin, Ludovic Guillaume and Vincent Lemort

Energy, 2013, vol. 55, issue C, 173-183

Abstract: The present paper focuses on the experimental characterization of an open-drive scroll expander integrated into an Organic Rankine cycle using R245fa as working fluid. The expander is a commercially available air compressor that was modified to operate in expander mode. The ORC (Organic Rankine Cycle) system is designed for a nominal heat input of 20 kW and a nominal net power output of 1.8 kW. A total of 74 steady-state operating points are measured to evaluate the expander performance over a wide range of conditions. The operating parameters that are varied include the inlet pressure (from 9 to 12 bar), outlet pressure (from 1.5 to 4 bar) and rotational speed (from 2000 to 3500 rpm). The maximum isentropic efficiency and shaft power are, respectively, 75.7% and 2.1 kW. A maximum cycle efficiency of 8.5% is reached for evaporating and condensing temperatures of 97.5 °C and 26.6 °C respectively. For most of the tests, hot water is produced in the condenser and the system therefore behaves as a CHP (combined heat and power). Depending on the water temperature requirement, a power to heat ratio varying between 1.9% and 11.8% is obtained. Water over 50 °C can be produced with a power to heat ratio higher than 8%.

Keywords: Organic Rankine Cycle; Scroll expander; Combined heat and power; Waste heat recovery; Oil-free expander (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (100)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213003034
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:173-183

DOI: 10.1016/j.energy.2013.04.003

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:173-183