Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction
Ali Deihimi,
Omid Orang and
Hemen Showkati
Energy, 2013, vol. 57, issue C, 382-401
Abstract:
In this paper, WESN (wavelet echo state network) with a novel ESN-based reconstruction stage is applied to both STLF (short-term load forecasting) and STTF (short-term temperature forecasting). Wavelet transform is used as the front stage for multi-resolution decomposition of load or temperature time series. ESNs function as forecasters for decomposed components. A modified shuffled frog leaping algorithm is used for optimizing ESNs. Both one-hour and 24-h ahead predictions are studied where the number of inputs are kept minimum. The performance of the proposed WESN-based load forecasters are investigated for three cases as the predicted temperature input is fed by actual temperatures, output of the WESN-based temperature forecasters and noisy temperatures. Effects of temperature errors on load forecasts are studied locally by sensitivity analysis. Hourly loads and temperatures of a North-American electric utility are used for this study. First, results of the proposed forecasters are compared with those of ESN-based forecasters that have previously shown high capability as stand-alone forecasters. Next, the WESN-based forecasters are compared with other models either previously tested on the data used here or to be rebuilt for testing on these data. Comparisons reveal significant improvements on accuracy of both STLF and STTF using the proposed forecasters.
Keywords: Echo state network; Short-term load forecasting; Short-term temperature forecasting; Shuffled frog leaping algorithm; Wavelet transform (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213005057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:57:y:2013:i:c:p:382-401
DOI: 10.1016/j.energy.2013.06.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().