Evaluation of self-heating in Miscanthus x giganteus energy crop clamps and the implications for harvesting time
Colm D. Everard,
John Finnan,
Kevin P. McDonnell and
Martin Schmidt
Energy, 2013, vol. 58, issue C, 350-356
Abstract:
Miscanthus x giganteus energy crop grown in Ireland was harvested on 21st of February and 28th of March 2012 to examine the effects of harvesting time on self-heating during storage of Miscanthus chips in clamps (98 m3) under weather sheltered conditions. There was a relatively large difference in moisture content, of 21.4%, between Miscanthus crop harvested in February and March (41.6 and 20.2%, respectively). Temperature evolution over a storage period of up to 125 days was monitored at different heights and distances from the centre within the clamps. Maximum temperature in the February constructed clamp reached 69 °C compared to 28 °C in the March constructed clamp. Microbial activity was monitored via carbon dioxide and oxygen gas measurements. The high moisture clamp showed higher microbial activity and a volume yield loss of 4.3% due to decomposition in the top section of the clamp. Quality indices post-storage were also assessed. Calorific values from Miscanthus sampled 1 m below the top surface were similar after storage for both February and March constructed clamps, i.e. 18.52 and 18.70 MJ kg−1, respectively. A reliable assessment of self-heating in Miscanthus chip clamps has important consequences for both self-ignition risk and biomass quality.
Keywords: Self-heating; Miscanthus x giganteus; Biomass storage; Self-ignition; Biomass quality (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213005203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:58:y:2013:i:c:p:350-356
DOI: 10.1016/j.energy.2013.06.022
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).