Matrix method for comparing system and individual energy return ratios when considering an energy transition
Carey W. King
Energy, 2014, vol. 72, issue C, 254-265
Abstract:
ERRs (Energy return ratios) are valuable metrics for understanding and comparing the contributions of individual energy technologies. It is also important to calculate ERRs in the context of a system, or economy, using a mix of energy technologies. In this paper I demonstrate a framework to simultaneously consider individual energy technology and system-wide ERRs using a process-based input–output model approach. I demonstrate the approach via an example calculating grid electricity ERRs assuming constant technology with only a shift in dominance from fossil to renewable technology. The framework also enables interpretation of changes in individual ERRs due to a shift from one technology to another, with implications for energy scenario analyses. Another finding of this paper is that the ERR GER (gross energy ratio, often assumed equal to EROImm (energy return on energy invested at the ‘mine mouth’)), is only well-defined for primary energy extraction and not energy carriers such as gasoline and electricity. NER (Net energy ratio) and NEER (net external energy ratio), also known as EPR (energy payback ratio), are the most appropriate metrics for describing energy carriers sold to consumers.
Keywords: Energy; Net energy; Life cycle assessment; Energy economics; Input–output (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214005817
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:72:y:2014:i:c:p:254-265
DOI: 10.1016/j.energy.2014.05.032
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).