EconPapers    
Economics at your fingertips  
 

Optimization of carbon-capture-enabled coal-gas-solar power generation

Philip G. Brodrick, Charles A. Kang, Adam R. Brandt and Louis J. Durlofsky

Energy, 2015, vol. 79, issue C, 149-162

Abstract: Computational optimization is used to determine the optimal design and time-varying operations of a carbon dioxide capture retrofit to a coal-fired power plant. The retrofit consists of an amine-based temperature-swing absorption system, to which process steam is supplied from an auxiliary unit. Two candidate auxiliary heat sources are explored: natural gas and solar thermal. The NPV (net present value) of the retrofitted facility is maximized to determine which auxiliary system is preferable, under a variety of economic conditions. Optimized NPV is found to be most sensitive to the price of natural gas and the electricity price. At an 8% real discount rate, without renewable energy incentives, natural gas prices must be high (in excess of 10 USD/GJ) for a solar thermal design to be preferable, and electricity prices must reach ≈55 USD/MWh in order for solar-thermal-based designs to have a positive NPV. Incentives such as investment tax credits and solar power purchase agreements can make solar-thermal-based designs preferable to natural-gas-based designs under certain circumstances.

Keywords: Optimization; Carbon capture; Solar thermal; Natural gas combined cycle (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214012572
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:79:y:2015:i:c:p:149-162

DOI: 10.1016/j.energy.2014.11.003

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:149-162