EconPapers    
Economics at your fingertips  
 

Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process

X. Xiao and P. Zhang

Energy, 2015, vol. 79, issue C, 337-350

Abstract: This paper is the first portion of a two-part study of the heat transfer characteristics of a shell-tube latent thermal energy storage (LTES) system. A three-dimensional computational fluid dynamics model based on enthalpy method was developed to investigate the charging characteristics of the LTES system. Pure paraffin and paraffin/expanded graphite (EG) composite PCMs containing 7 wt. % and 10 wt. % EG were used as the phase change materials (PCMs), and water filled in a cylindrical tank was used as the heat transfer fluid (HTF). A variety of numerical investigations were carried out with different inlet temperatures and flow rates of the HTF for heat storage. The temperatures at various locations in the LTES system were experimentally measured and compared with the numerical results. It is shown that the model can accurately predict the thermal behaviors of the LTES system during heat storage. Large temperature difference between the HTF and the initial state of PCM would accelerate the charging process, which could also be significantly improved with the higher flow rate. The performance of the LTES system was affected prominently by the types of PCMs, HTF temperatures and flow rates.

Keywords: Latent thermal energy storage; Composite phase change materials; Heat transfer characteristics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214012754
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:79:y:2015:i:c:p:337-350

DOI: 10.1016/j.energy.2014.11.020

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:337-350