EconPapers    
Economics at your fingertips  
 

Thermal analysis on a segmented thermoelectric generator

T. Ming, Y. Wu, C. Peng and Y. Tao

Energy, 2015, vol. 80, issue C, 388-399

Abstract: To improve their efficiency is of vital importance for the widespread application of TEG (thermoelectric generators). A design methodology, formulated on mathematical analysis and performed by spreadsheet calculation, was advanced to derive the optimum efficiency and geometrical dimensions of the STEG (segmented thermoelectric generator) module operating between 300 K and 780 K. The properties of the thermoelectric materials, such as the Seebeck coefficient, thermal conductivity, and electrical conductivity, were temperature-dependent. Meanwhile, a three-dimensional thermoelectric finite element model based on mathematical calculation was established to examine and verify the physical quantities when the STEG model operated in design condition. The simulation results indicated that this model is able to supply a steady voltage higher than 1.00 V and that the peak efficiency is about 11.2% when the load resistance is close to the internal resistance, which matches well with the mathematical analysis results. Furthermore, a series of tests were carried out to investigate the performance of an optimum TEG model under different conditions. It was found that the STEG can take full use of characteristics of different thermoelectric materials, and increase the efficiency and voltage output in most situations.

Keywords: Segmented thermoelectric generator; Compatibility; Efficiency; Structure design (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214013504
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:80:y:2015:i:c:p:388-399

DOI: 10.1016/j.energy.2014.11.080

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:388-399