A hybrid technique for short-term wind speed prediction
Jianming Hu,
Jianzhou Wang and
Kailiang Ma
Energy, 2015, vol. 81, issue C, 563-574
Abstract:
This study proposes a hybrid forecasting approach that consists of the EWT (Empirical Wavelet Transform), CSA (Coupled Simulated Annealing) and LSSVM (Least Square Support Vector Machine) for enhancing the accuracy of short-term wind speed forecasting. The EWT is employed to extract true information from a short-term wind speed series, and the LSSVM, which optimizes the parameters using a CSA algorithm, is used as the predictor to provide the final forecast. Moreover, this study uses a rolling operation method in the prediction processes, including one-step and multi-step predictions, which can adaptively tune the parameters of the LSSVM to respond quickly to wind speed changes. The proposed hybrid model is demonstrated to forecast a mean half-hour wind speed series obtained from a windmill farm located in northwestern China. The simulation results suggest that the developed forecasting method yields better predictions compared with those of other popular models, which indicates that the hybrid method exhibits stronger forecasting ability.
Keywords: Wind speed; Hybrid forecasting; Empirical wavelet transform; Coupled simulated annealing (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000067
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:563-574
DOI: 10.1016/j.energy.2014.12.074
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().