EconPapers    
Economics at your fingertips  
 

Normalized performance optimization of supercritical, CO2-based power cycles

Felipe G. Battisti, José M. Cardemil, Francisco M. Miller and Alexandre K. da Silva

Energy, 2015, vol. 82, issue C, 108-118

Abstract: This study considers the multivariable thermodynamic analysis and optimization of transcritical Rankine cycles operating with carbon dioxide as working fluid. Three dependent variables were used as figures of merit: the net power produced by the cycle, and its 1st and 2nd Law efficiencies, all calculated in absolute terms and per unit of global conductance (UA)Total, where (UA)Total accounts for the conductance of all heat exchangers used in the cycle. The key variables were the high pressure of the CO2 within the cycle and the temperature of the heat source, along with four different cycle configurations: (i) a basic power cycle, (ii) a cycle with a recuperator, (iii) a cycle with re-heating and (iv) a cycle with a recuperator and re-heating, namely, combined cycle. The optimization process relied on optimization routines and considered latent and sensible heat sources. This procedure was able to show that while the individually defined figures of merit mostly presented established trends, the normalized figures of merit (i.e., those defined per unit of UA) are highly dependent on the parameters considered and clearly show the existence of optimum values, which are a function of the cycle's configuration, figures of merit considered and operation parameters.

Keywords: Carbon dioxide; Heat exchanger conductance; Optimization; Power cycles (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000122
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:82:y:2015:i:c:p:108-118

DOI: 10.1016/j.energy.2015.01.005

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:108-118