A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications
Luwen Wang,
Mingyan He,
Yue Hu,
Yufeng Zhang,
Xiaowei Liu and
Gaofeng Wang
Energy, 2015, vol. 82, issue C, 229-235
Abstract:
A “4-cell” modular passive DMFC (direct methanol fuel cell) stack, which can be freely combined and applied to various electronic devices, is designed, fabricated and tested. Two PCB (printed circuit board) based accessories are designed and fabricated for electrically connecting and mechanically assembling the “4-cell” modules. The maximum power density of the “4-cell” module is 27 mW cm−2 at 5 M methanol concentration. The steady-state performances of the modular stacks with different numbers of modules are tested. The extra power loss of the multiple module stacks due to inter-module electrical connections is predicted by mathematical fitting method. The fitting results indicate that the efficiencies of the multiple module stacks are all above 90% up to 10 modules. The dynamic performances of the modular stacks are also investigated for portable applications. The results show that the modular stacks exhibit good responsiveness and reproducibility at high loading current (>100 mA). Finally, the modular stacks are successfully applied to drive the experimental fan and charge the mobile phone.
Keywords: Direct methanol fuel cell stack; Modular; Passive; Portable applications (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:82:y:2015:i:c:p:229-235
DOI: 10.1016/j.energy.2015.01.033
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().