EconPapers    
Economics at your fingertips  
 

Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell

Rui B. Ferreira, D.S. Falcão, V.B. Oliveira and A.M.F.R. Pinto

Energy, 2015, vol. 82, issue C, 619-628

Abstract: In this work, the two-phase flow in an anode gas channel of a PEM (proton exchange membrane) fuel cell is numerically investigated using the VOF (volume of fluid) method. Water movement in the gas channel is analyzed and the effects of hydrogen inlet velocity, operating temperature and channel walls wettability are investigated. Results reveal that for hydrophilic channel walls water moves as films in the upper surface of the channel (surface opposite to the GDL (gas diffusion layer)) whereas it moves as a droplet when the channel walls are hydrophobic. Moreover, increasing hydrogen inlet velocity, operating temperature and channel walls wettability results into a faster water removal. However, for the case when hydrogen velocity is increased, a considerable increment on pressure drop is also observed. Results from the present work provide important quantitative information that complements experimental data from literature.

Keywords: PEM fuel cell; Anode gas channel; Two-phase flow; Numerical simulations; VOF method (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500095X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:82:y:2015:i:c:p:619-628

DOI: 10.1016/j.energy.2015.01.071

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:619-628