EconPapers    
Economics at your fingertips  
 

Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor

Medhat A. Nemitallah, Mohamed A. Habib and K. Mezghani

Energy, 2015, vol. 84, issue C, 600-611

Abstract: A combined experimental and numerical study is performed on a button-cell LNO-ITM reactor. A semi-empirical model for oxygen permeation is considered, ABn model, and the values of the empirical constants are calculated based on the fitting of the available experimental data in the literature. A validation study for the present model is performed using the present experimental data. A detailed numerical study is presented on an LNO-ITM button-cell reactor under oxy-fuel combustion conditions. CH4 is used as the working fuel forming a mixture with CO2 at the permeate side inlet. The model results showed reasonable agreements under different operating conditions. The effect of reactivity in the permeate side of the membrane on oxygen permeation flux is considered. It is found that the oxygen permeation flux is increased by about 50% for the case of reacting flow as compared to the case of non-reacting flow. Distinct behavior of oxygen permeation flux values through the present button-cell ITM reactor is encountered while varying the operating conditions as compared to other reactors in the literature. This may be attributed to the complicated design of the flow path close to the membrane surface which maximizes the effects of flow momentum on the oxygen flux.

Keywords: Button-cell reactor; LNO-ITM reactor; Oxygen permeation; Oxy-combustion characteristics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003163
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:84:y:2015:i:c:p:600-611

DOI: 10.1016/j.energy.2015.03.022

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:600-611