EconPapers    
Economics at your fingertips  
 

Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres

YuTing Tang, XiaoQian Ma, ZhiYi Lai and Yunxiang Fan

Energy, 2015, vol. 90, issue P1, 1066-1074

Abstract: The combustion of plastic (PVC), rubber (TR) and leather (L) in different atmospheres (80N2/20O2, 80CO2/20O2, 70CO2/30O2, 60CO2/40O2, 50CO2/50O2) was analyzed thermogravimetrically. Regardless of individual material or blend, the replacement of N2 only by CO2 resulted in smaller weight loss rates, a change in reactions occurring above 600 °C and a worse burnout, and the oxygen-enriched combustion technology could alleviated the inhibitory effects to some extent. Above 600 °C, the effect of O2 concentration on the weight loss rate in CO2/O2 atmosphere depended on the given operating conditions, but still postponed the location of the peaks. The characteristics of blends could be predicted roughly by the individual fuels and blending ratio. The addition of TR to L or PVC (polyvinyl chloride) hindered the burnout, and the addition of PVC to L or TR hindered the char-CO2 reaction. For the same individual material or blend, the apparent activation energies for the first two reactions in 70CO2/30O2 approximately equal to those in 80N2/20O2, while that the value for the third reactions in two atmospheres differed greatly. This work contributes to the understanding of MSW (municipal solid waste) oxygen-enriched combustion and development of MSW oxy-fuel combustion.

Keywords: Plastic; Rubber; Leather; Oxygen-enriched combustion; Oxy-fuel combustion; Co-combustion (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215010853
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p1:p:1066-1074

DOI: 10.1016/j.energy.2015.08.015

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:1066-1074