EconPapers    
Economics at your fingertips  
 

MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

Jahan-Bakhsh Raoof, Sayed Reza Hosseini, Reza Ojani and Sakineh Mandegarzad

Energy, 2015, vol. 90, issue P1, 1075-1081

Abstract: In this work, metal-organic framework Cu3(BTC)2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m2 g−1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 10−3 mAcm−2, respectively.

Keywords: MOF-199; MOF-derived Cu/nanoporous carbon composite; Direct carbonization; Non-platinum catalyst; Hydrogen evolution reaction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421501083X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p1:p:1075-1081

DOI: 10.1016/j.energy.2015.08.013

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:1075-1081