On the optimal mix of wind and solar generation in the future Chinese power system
Matthias Huber and
Christoph Weissbart
Energy, 2015, vol. 90, issue P1, 235-243
Abstract:
China is one of the largest and fastest growing economies in the world. Until now, the corresponding growth of electricity consumption has been mainly provided by coal. However, as national reserves are limited and since burning coal leads to severe environmental problems, the employment of alternative sources of energy supply has become an important part of the Chinese energy policy. Recent studies show that wind energy alone could meet all of China's electricity demand. While our results validate these findings with regard to annual production, we look at the hour-by-hour resolution and uncover a major limitation: wind generation will not match the demand at every given point in time. This results in significant periods with over- and undersupply. Our study shows that combining wind and solar generation in the power system reduces overproduction significantly and increases the capacity credit of the combined VRE (variable renewable energy sources). The article demonstrates that up to 70% of VRE comprising 20–30% solar generation in the form of photovoltaics (PV) can be integrated into China's electricity system with moderate storage requirements. We encourage planners to consider those findings in their long-term planning in order to set up a sustainable power system for China at low costs.
Keywords: Wind and solar generation; China; Optimal generation mix; Variable renewable generation; Storage requirements; Capacity credit (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007720
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p1:p:235-243
DOI: 10.1016/j.energy.2015.05.146
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().