EconPapers    
Economics at your fingertips  
 

Modified intake and exhaust system for piston-type compressed air engines

Chi-Min Liu, Jhih-Jie You, Cheng-Kuo Sung and Chih-Yung Huang

Energy, 2015, vol. 90, issue P1, 516-524

Abstract: This study investigated a modified intake and exhaust system for piston-type compressed air engines. A conventional 100-cm3 four-stroke internal combustion engine was modified to a two-stroke compressed air engine and its output power and fluid properties at various intake pressures and rotational speeds were examined. The torque output, airflow rate, and cylinder pressure were recorded; these values reflected the fluid characteristics of the compressed air engine during operation. The conventional engine design uses a cam mechanism for controlling the intake and exhaust valves, wherein the valves open and close gradually. To overcome this drawback, a rotary intake and exhaust system was designed in which the valves open and close quickly. This new system is operable at air pressures as high as 13 bar, and the operating cylinder pressure rises faster than it does in systems featuring the conventional cam mechanism. Air engines installed with the new rotary intake and exhaust system yield an output power of 2.15 kW and a torque of 15.97 Nm at 13 bar.

Keywords: Rotary intake and exhaust system; Compressed air engine; Piston-type engine (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215009809
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p1:p:516-524

DOI: 10.1016/j.energy.2015.07.085

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:516-524