EconPapers    
Economics at your fingertips  
 

Investigation of parameters affecting exergy and emission performance of basic and intercooled gas turbine cycles

Anupam Kumari and Sanjay,

Energy, 2015, vol. 90, issue P1, 525-536

Abstract: In this article an attempt has been made to analyze the affect of various cycle operating parameters, compressor-pressure-ratio, TRIT (turbine-rotor-inlet-temperature) combustor-primary-zone-temperature, equivalence-ratio, and residence-time on thermodynamic as well as emission performance of the BGT (basic-gas-turbine) and IcGT (intercooled-gas-turbine) cycles on a comparative basis. Thermodynamic assessment of the proposed cycles, shows that rational efficiency of the IcGT (intercooled-gas-turbine cycle) to be 8.39% higher than the BGT (basic-gas-turbine cycle). Overall exergy destruction within the cycles has been found to the 4.42% lower for IcGT cycle as compared to BGT cycle. It has also been observed that the IcGT cycle delivers higher gas turbine specific work and thermal efficiency in comparison to the BGT cycle for the same compressor-pressure-ratio and TRIT. Emission assessment shows that at fixed value of equivalence-ratio and residence-time, NOx emission is higher at higher values of compressor-pressure-ratio (rp,c) for both cycles. The mass of NOx and UHC (unburnt-hydrocarbon) emission increases with increase in equivalence-ratio, whereas CO (carbon-monoxide) emission decreases with increase in equivalence-ratio. Emission performance maps show lower quantum of NOx and CO emission for the IcGT cycle. UHC emission is higher in case of IcGT cycle due to lower combustor inlet air temperature. Overall, both thermodynamic and emission performance of IcGT cycle is superior.

Keywords: Rational efficiency; Exergy destruction; Emission performance map; NOx; CO (carbon-monoxide); UHC (unburnt-hydrocarbon) (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215009792
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p1:p:525-536

DOI: 10.1016/j.energy.2015.07.084

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:525-536