Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well
Jun-Seo Jeon,
Seung-Rae Lee,
Lisa Pasquinelli and
Ida Lykke Fabricius
Energy, 2015, vol. 90, issue P2, 1349-1359
Abstract:
High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables.
Keywords: High-temperature aquifer thermal energy storage; Sensitivity analysis; Gaussian Kriging method; Computational experiment; Gassum formation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500835X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p2:p:1349-1359
DOI: 10.1016/j.energy.2015.06.079
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().