Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine
Xiaojing Lv,
Chaohao Lu,
Yuzhang Wang and
Yiwu Weng
Energy, 2015, vol. 91, issue C, 10-19
Abstract:
In this work, detailed mathematical models of a hybrid system of an IT-SOFC (intermediate-temperature solid oxide fuel cell) and a GT (gas turbine) that is fueled by gasified biomass gas are built. Under the constraints of the working temperature of the fuel cell, mean axial temperature gradient, compressor surge, and turbine inlet temperature, the effects of operating parameters on the hybrid system are investigated mainly including RS (rotational speed), F/A (fuel/air) ratio, and S/C (steam/carbon) ratio. The electrical efficiency is 59.24% under the design condition. The power and efficiency of the system both decrease as the RS increases, with the latter decreasing from 60.95% to 49.08%. If the RS is too low, the system operation goes beyond the safety zone. In this situation, both the fuel cell and the turbine may be subjected to excess temperatures, and the compressor may easily surge. The efficiency increases from 56.5% to 61.34% with increasing F/A ratio, but an extremely high F/A ratio can cause the turbine to suffer from excess temperature. The efficiency decreases from 61.12% to 56.8% with increasing S/C ratio. The following two conclusions are drawn. First, the F/A ratio has the greatest influence on the performance of the hybrid system, i.e., its adjustment can effectively change the load in a wide range. Second, the RS and S/C ratio are suitable for load adjustment in a narrow range.
Keywords: Intermediate temperature solid oxide fuel cell; Gas turbine; Hybrid system; Gasified biomass gas; Operating parameter (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215009950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:10-19
DOI: 10.1016/j.energy.2015.07.100
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().