EconPapers    
Economics at your fingertips  
 

Efficiency evaluation procedure of coal-fired power plants with CO2 capture, cogeneration and hybridization

Hayato Hagi, Thibaut Neveux and Yann Le Moullec

Energy, 2015, vol. 91, issue C, 306-323

Abstract: In an energy landscape undergoing great change with regard to CO2 emissions, the evaluation of solutions allowing a drastic reduction of the anthropogenic emissions are carried out for more than a decade. Among them, CO2 capture and storage on coal power plants has been identified as a particularly promising solution but other options such as heat and electricity cogeneration and power plant hybridization with solar of biomass can also reduce the carbon footprint of electricity production. However, the implementation of an external process on a power plant impacts its electric production. Post- and oxy-combustion CO2 capture, cogeneration for industries or districts, or hybridization are all examples of processes either demanding thermal and electrical energy or providing heat valorization opportunities. To identify the true potential of those systems, the evaluation of the performance of the integrated system is necessary. Also, to compare different solutions, a common framework has to be adopted since the performance of those systems are often highly dependent of the considered hypotheses.

Keywords: CO2 capture; Post-combustion; Oxy-combustion; Power plant integration; Cogeneration; Hybridization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011123
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:306-323

DOI: 10.1016/j.energy.2015.08.038

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:306-323