Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies
M. Edwin and
S. Joseph Sekhar
Energy, 2015, vol. 91, issue C, 842-851
Abstract:
The milk processing and preservation is a fast growing business in developing countries and it is facing problems due to high energy cost and environmental concerns in using conventional energy sources. The energy tapped from renewable energy sources through the technological innovations would be one of the best options to implement the milk preservation strategies at village level. In rural areas, bioenergy is one of the most versatile energy-generating options. Because of the diversity in feed stock and conversion technologies, suitable study is needed to implement renewable energy base technologies to provide a continuous flow of energy services. In this paper, the use of locally available renewable energy sources, in various combinations, to operate a milk chilling plant at village level has been analysed using the Matlab software. The effect of variations in the combination of renewable energy sources on the overall system COP has been studied. The study predicts that the best possible overall system COPs in hilly, rubber cultivation, paddy and seashore regions are 0.26, 0.25, 0.235 and 0.24 respectively. Moreover, suitable combinations identified in the aforementioned regions are Biomass/Gobar gas (0.7:0.3), Biomass/Biogas/Gobar gas (0.7:0.1:0.2), Biogas/Biomass/Gobar gas (0.6:0.15:0.25) and Biomass/Gobar gas/Biogas/Solar (0.5:0.25:0.125:0.125) respectively.
Keywords: Hybrid energy; Renewable energy; Bio-energy; Solar; Cooling system (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011809
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:842-851
DOI: 10.1016/j.energy.2015.08.103
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().