Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics
Shin'ya Obara,
Jorge Ricardo Morel Rios and
Masaki Okada
Energy, 2015, vol. 91, issue C, 994-1008
Abstract:
Using numerical analysis, stabilization of the cyclic fluctuation (changes of several minutes or less) of PV (photovoltaics) was attempted by introducing governor-free control of a SOFC (solid oxide fuel cell), controlling air flow rate, and using a flywheel inertia system. The energy balance of the system element, mass balance, time lag, etc. were modeled, and the response characteristics of the proposed system were analyzed using MATLAB/Simulink 2013a. Consequently, the range of fluctuation in the electrical frequency within 0.2 Hz was controlled by introducing a flywheel inertia constant of 0.01 s. Interconnection electricity using PV with cyclic fluctuations can be supplied as high-definition electricity. That electricity is controlled using a flywheel and a proportional-integral-differential controller with suitable parameters by adjusting the governor-free control and rate of air flow in the SOFC. The SOFC and an inertia system provide a supply of backup power from renewable energy and serve to promote the increased use of clean energy.
Keywords: Solid oxide fuel cell; Photovoltaics; Independent microgrid; Inertia system; Electric power quality (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421501169X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:994-1008
DOI: 10.1016/j.energy.2015.08.093
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().