Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger
Stanisław Łopata and
Paweł Ocłoń
Energy, 2015, vol. 92, issue P1, 100-116
Abstract:
The paper presents the numerical analysis of a flow around a bundle of externally finned elliptical tubes, used in cross-flow heat exchangers of a flue-gas/water type, arranged serially in two rows. An algorithm that enables determining the variations of flue-gas temperature and local heat transfer coefficient from gas to the tube wall was presented. On the basis of calculations, it was found that the intensity of heat transfer processes differs significantly in different rows. The intensity is higher in the first row and lower in the second one. This fact is confirmed by the values of the local heat transfer coefficients calculated for the case of heat transfer from gas to a wall determined at the same location. The coefficients, calculated for the first row of tubes, are higher compared with those of the second row. The appearance of fouling deposits on the tube's wall inner surface has an impact on the average temperature along the exhaust gas flow path. It also affects the local heat transfer coefficients from the gas-side to the tube walls. The presence of fouling increases the flue-gas temperature, while its influence on the heat transfer coefficient is slight.
Keywords: Heat exchanger; Finned elliptical tube; Fouling; CFD simulations (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:92:y:2015:i:p1:p:100-116
DOI: 10.1016/j.energy.2015.03.048
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().