Optimizing of the underground power cable bedding using momentum-type particle swarm optimization method
Paweł Ocłoń,
Piotr Cisek,
Dawid Taler,
Marcin Pilarczyk and
Tomasz Szwarc
Energy, 2015, vol. 92, issue P2, 230-239
Abstract:
Thermal performance optimization of underground power cable system is presented in this paper. The analyzed system consists of three underground power cables situated in an in-line arrangement. The HDPE (High-Density Polyethylene) casing pipes, filled with SBM (Sand-Bentonite Mixture), covers the cables to protect them from heavy mechanical loads (e.g. vibrations). The FTB (Fluidized Thermal Backfill) layer is applied to prevent the cables from overheating. Due to the substantial costs of FTB backfill material (in relation to the native soil or dry sand), the cross-sectional area of FTB bedding layer has to be minimized. Furthermore, the maximum cable conductor temperature is expected not to exceed the optimum operating temperature. Therefore, the optimization procedure i.e. momentum-type PSO (Particle Swarm Optimization) is applied. The FEM (Finite Element Method) is used to solve the two-dimensional steady-state heat conduction problem. As a result, temperature distribution is determined for the native soil, FTB bedding, and cables. The performed computations considered the temperature dependent current rating and volumetric heat generation rate from cable conductor. The applied optimization procedure resulted in determination of the optimum cable spacing and cross-sectional area of the rectangular-shaped FTB bedding layer. Moreover, the obtained maximum temperature for the cable core do not exceed the allowable value.
Keywords: Momentum-type particle swarm optimization; Underground power cable system; Thermal conductivity; Heat dissipation; Fluidized thermal backfill (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215005861
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:92:y:2015:i:p2:p:230-239
DOI: 10.1016/j.energy.2015.04.100
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().