EconPapers    
Economics at your fingertips  
 

Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows

Xiong Liu, Lingen Chen, Xiaoyong Qin and Fengrui Sun

Energy, 2015, vol. 93, issue P1, 10-19

Abstract: An optimization model based on material balance and energy balance for a blast furnace iron-making process is established, in which exergy loss minimization is taken as optimization objective. Optimization results are obtained by using sequential quadratic programming method. Effects of coal ratio, top gas temperature, slag basicity and blast parameters on the optimization results are analyzed. The optimization results of the exergy loss minimization objective and the coke ratio minimization objective are analyzed comparatively. The energy flows and exergy flows before and after the optimizations for different objectives are analyzed comparatively. The results show that the total energy flow input, the total exergy flow input and the exergy loss decrease after optimizations. The exergy loss obtained from the optimizations for the exergy loss minimization objective and coke ratio minimization objective decreases by 5.77% and 5.14%, respectively. Above 80% of the total energy input is the energy of fuel and above 80% of the total exergy input is the exergy of fuel. The exergy loss decreases with the increases in coal ratio and blast temperature, and increases with the increases in blast humidity, oxygen enrichment, top gas temperature and slag basicity.

Keywords: Blast furnace; Iron-making process; Exergy loss; Optimization; Energy flow; Exergy flow (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215012001
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:10-19

DOI: 10.1016/j.energy.2015.09.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:10-19