EconPapers    
Economics at your fingertips  
 

A robust demand response control of commercial buildings for smart grid under load prediction uncertainty

Dian-ce Gao, Yongjun Sun and Yuehong Lu

Energy, 2015, vol. 93, issue P1, 275-283

Abstract: Various demand response control strategies have been developed for grid power balance and user cost saving. Few studies have systematically considered the impacts of load prediction uncertainty which can cause the strategies fail to achieve their objectives. This study, therefore, develops a robust demand response control of commercial buildings for smart grid under load prediction uncertainty. Based on the initial control signals from the conventional genetic algorithm method, the optimal control signals with improved robustness are obtained using the Monte Carlo method. Under dynamic pricing of smart grid, the study results show the impacts of load prediction uncertainty reduce the daily electricity cost saving from 8.5% to 4.1%. Such a significant cost saving reduction implies the necessity of taking account of the load prediction uncertainty in the development of a demand response control. Moreover, under the load prediction uncertainty, the proposed demand response control can still achieve 7.3% daily electricity cost saving, which demonstrates its robustness and effectiveness. The improved robustness of the proposed control has also been demonstrated by the statistics analysis results from the Monte Carlo studies. The proposed robust control is useful for commercial buildings to achieve significant cost savings in practice particularly as uncertainty exists.

Keywords: Demand response; Robust control; Uncertainty; Cost saving; Smart grid (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215012724
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:275-283

DOI: 10.1016/j.energy.2015.09.062

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:275-283