Assessment of the energy and exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and Germany
Bahar Degerli,
Serap Nazir,
Esra Sorgüven,
Bernd Hitzmann and
Mustafa Özilgen
Energy, 2015, vol. 93, issue P1, 421-434
Abstract:
Energy and exergy efficiencies of the wheat and rye bread and hamburger bun making processes are assessed based on data from Turkey and Germany. Amount of the land required to produce the same amount of wheat in Turkey is 3.34 times of that required in Germany; this ratio is 2.30 for the rye grain. These results show that the efficiency of the conversion of the solar energy into the grain mass is low in Turkey. CDP (Cumulative degree of perfection) for the wheat and the rye grain production is 3.73 and 4.96 in Turkey, and 11.26 and 10.46 in Germany. Specific energy utilization for rye bread production is almost the same in Turkey and Germany; but it is 12% higher in Turkey for wheat bread and hamburger bun making. Hamburger bun production requires the maximum energy utilization due to the higher weight loss in baking. The rye bread production process requires the minimum energy utilization due to the lower energy input in the agriculture and higher efficiency in the flour production. The maximum exergy destructions occur during the milling and the baking steps.
Keywords: Bread making; Energy efficiency; Exergy efficiency; Carbon dioxide emission (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421501172X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:421-434
DOI: 10.1016/j.energy.2015.08.095
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().