Ship weight reduction and efficiency enhancement through combined power cycles
Alejandro Rivera-Alvarez,
Michael J. Coleman and
Juan C. Ordonez
Energy, 2015, vol. 93, issue P1, 521-533
Abstract:
This work addresses the problem of configuration of gas and steam turbine combined cycles for ships by simultaneously considering increased efficiency and reduced weight as design objectives. The performed analysis provides basic information to produce systems with simultaneous advantage in both aspects. The combined cycle considered, with total constant power of 20 MW, is modeled as a gas turbine in standard configuration coupled to a simple Rankine cycle. Calculation of system's weight includes the machinery as well as the fuel required to guarantee a given time at sea. To estimate the machinery components weight, some scaling relations have been developed and used. The results presented include an analysis of the predicted weight and efficiency of the combined cycle respect to varying design parameters such as amount of heat recovered, time at sea, steam turbine exit quality, steam generator pinch point, and gas turbine performance. When compared against gas turbines in simple cycle mode, combined cycles produce a fuel requirement reduction that can overcome, in terms of weight, the size increase experienced by the plant. However, it is in general observed that minimum weight and maximum efficiency configurations do not necessarily coincide, as both objectives compete at intermediate values of heat recovery. Therefore, the particular choice of the final design depends on the relative importance assigned to each objective for the considered system. Notably, minimum weight and maximum efficiency solutions are very different for short trip periods but become basically the same for very long ones. Regarding gas turbine operation parameters, they have a strong influence on both total weight and efficiency. An interesting consequence is that a low efficiency gas turbine could produce better results than a high efficiency one, given a large enough temperature for the exhaust gases.
Keywords: Combined cycles; Power plant weight; Power generation in ships; Power plant optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421501155X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:521-533
DOI: 10.1016/j.energy.2015.08.079
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().