On flame propagation in narrow channels with enhanced wall thermal conduction
Ananthanarayanan Veeraragavan
Energy, 2015, vol. 93, issue P1, 631-640
Abstract:
The influence of orthotropic wall materials, which have enhanced thermal conductivity in the axial direction, on the flame speed is explored via an analytical model in a parallel plate microcombustor. The model accounts for 2D conjugate heat transfer (both in wall and gas) and fuel species transport in the micro-channel. The effects of heat loss, orthotropic wall thermal conductivities, and wall thickness on the flame speed are explored. The results indicate that as the axial thermal conductivity of the wall is increased, the allowable heat losses to the ambient by the burner also increased. Thicker walls showed increased benefit to the thermal conductivity tailoring than thinner wall designs; both in increased flame speeds as well as the ability to tolerate higher heat losses without extinction. Total heat recirculation is shown to be the primary parameter to control the flame speed.
Keywords: Micro-combustion; Orthotropic thermal conductivity; Micro-channel; Flame speed; Conjugate heat transfer (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215012955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:631-640
DOI: 10.1016/j.energy.2015.09.085
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().