EconPapers    
Economics at your fingertips  
 

Biomethane and biocrude oil production from protein extracted residual Spirulina platensis

Naga Sirisha Parimi, Manjinder Singh, James R. Kastner and Keshav C. Das

Energy, 2015, vol. 93, issue P1, 697-704

Abstract: The performance of the residual biomass obtained after protein extraction from the cyanobacterium Spirulina platensis as a feedstock for biomethane production via AD (anaerobic digestion), and biocrude oil production via HTL (hydrothermal liquefaction) pathways was investigated. The experimental methane yield and kinetic rate of methane production from PERB (protein extracted residual biomass) were higher by 30.4% and 161% respectively, compared to ORIB (original S. platensis biomass). The rate of methane production for PERB was also higher (by 38.9%) than high pressure homogenizer DISB (disrupted biomass), although the yield was slightly lower (by 7.8%). The lag phase time for methane production was the least for PERB among all the three substrates. On the other hand, HTL of PERB resulted in biocrude oil with slightly lower nitrogen content than ORIB (6.2% and 7% respectively), although at a reduced yield. A composition analysis using GC–MS revealed that the biocrude from PERB had a higher number of hydrocarbons and fatty acids and lower number of nitrogenous compounds compared to that from ORIB. A comparison of energy output and energy recovery in the AD and HTL processes suggested a better performance of PERB in the former process.

Keywords: Spirulina platensis; Protein extraction; Protein extracted residual biomass; Anaerobic digestion; Hydrothermal liquefaction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215012517
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:697-704

DOI: 10.1016/j.energy.2015.09.041

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:697-704