Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions
Guven Gonca,
Bahri Sahin,
Adnan Parlak,
Vezir Ayhan,
İdris Cesur and
Sakip Koksal
Energy, 2015, vol. 93, issue P1, 795-800
Abstract:
The Miller cycle has been applied into the ICEs (internal combustion engines) to reduce NOx emissions, in the recent years. However, this method may decrease the engine power. The most common technique which improves the engine power is application of turbo charging. Thus, these two methods can be combined to make up for power loss and decrease emissions. In this study, the application of the Miller cycle and turbo charging methods into a single cylinder, four-stroke, DI (direct injection) diesel engine has been experimentally carried out. Two different versions of the Miller cycle, which provide 5 and 10 CA (crank angle) retarding compared to standard condition, are applied using two different camshafts. Turbo charging is applied at two different pressures, which are 1.1 and 1.2 bar, using a screw type compressor. In the results, the effective power and efficiency increased by 5.1% and 6.3%, NO, HC, CO and CO2 decreased by 27%, 28%, 55% and 10%, respectively. The results show that combination of the proposed methods may be applied into the diesel engines to minimize NO and improve engine performance.
Keywords: Diesel engine; Turbo charging; Miller cycle; Engine performance; Emissions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:795-800
DOI: 10.1016/j.energy.2015.08.032
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().