Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps
N. Gunasekar,
M. Mohanraj and
V. Velmurugan
Energy, 2015, vol. 93, issue P1, 908-922
Abstract:
In this work, the artificial neural network model was developed to predict the energy performance of a photovoltaic-thermal evaporator used in solar assisted heat pumps. The experiments were carried out under the meteorological conditions of Coimbatore city (latitude of 10.98°N and longitude of 76.96°E) in India. The energy performance parameters of a photovoltaic-thermal evaporator such as, evaporator heat gain, solar energy input ratio, photovoltaic efficiency and photovoltaic panel temperature were observed with reference to four ambient parameters such as, solar intensity, ambient temperature, ambient wind velocity and ambient relative humidity. The experimental results were used as training data for the network. The multilayer feed forward network is optimized to 4-15-4 configuration for predicting the energy performance of the photovoltaic-thermal evaporator. Analysis of variance was carried out to identify the significant ambient parameter influencing the energy performance of photovoltaic-thermal evaporators. The network predictions are found to be closer to the experimental values with the maximum fraction of absolute variance values, minimum root mean square errors and minimum coefficient of variance values. The analysis of variance results confirmed that solar intensity and ambient temperature are the most influencing parameters affecting the energy performance of photovoltaic-thermal evaporators.
Keywords: Photovoltaic-thermal evaporator; Artificial neural networks; Solar assisted heat pumps (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215012888
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:908-922
DOI: 10.1016/j.energy.2015.09.078
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().