EconPapers    
Economics at your fingertips  
 

Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water

N. Yu, R.Z. Wang and L.W. Wang

Energy, 2015, vol. 93, issue P2, 1523-1534

Abstract: A 1 kWh lab-scale sorption prototype using LiCl-water was theoretically and experimentally investigated for sorption thermal energy storage. A type of consolidated composite matrix is developed for the system by using AC (activated carbon), LiCl, expanded natural graphite treated with sulphuric acid (ENG-TSA) to increase heat transfer and SS (silica solution) to enhance mechanical strength. Thermal conductivity and permeability were measured first. A two-dimensional model considering the combined heat and mass transfer was developed to predict the sorption kinetics of the reactor. Under the operation condition of a charging temperature of 85 °C and a discharging temperature of 40 °C, the experimentally recovered heat is 2517 kJ, resulting a heat storage efficiency of 93%. The heat storage density is 874 kJ/kg consolidated sorbent or 2622 kJ/kg LiCl. The experimental results of the prototype were compared with the simulated results. The established two-dimensional model proves to be effective since the general evolution trends of experimental and simulated outlet fluid temperatures are in good agreement. An average gap of about 0.4 °C between the experimental and simulated outlet temperature may be caused by the heat loss and the constant pressure assumption.

Keywords: Thermal energy storage; Sorption thermal storage; Consolidated sorbent; Lithium chloride-water (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215013560
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p2:p:1523-1534

DOI: 10.1016/j.energy.2015.10.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1523-1534