EconPapers    
Economics at your fingertips  
 

Prediction of steam-assisted gravity drainage steam to oil ratio from reservoir characteristics

Oguz Akbilgic, Da Zhu, Ian D. Gates and Joule A. Bergerson

Energy, 2015, vol. 93, issue P2, 1663-1670

Abstract: Forecasts suggest that production of bitumen from oil sands reservoirs will increase by a factor of at least 2.5 times over roughly the next 15 years. Although a significant economic benefactor to the Canadian economy, there are challenges faced by oil sands operators with respect to greenhouse gas emissions and water consumption. For the Athabasca deposit, the current oil recovery process of choice is the SAGD (steam-assisted gravity drainage) method where high temperature and high pressure steam is injected into the oil sands formation. At present, there are more than ten SAGD operators in Alberta, Canada and results to date reveal that the geology of the reservoir impacts SAGD performance. Given the growth of the SAGD industry in Alberta, forecasting tools are required that can predict performance versus reservoir characteristics. Here, we present a neural network-based model to predict the SOR (steam-to-oil ratio) in oil sands reservoirs by using log and core data to characterize the reservoir porosity, permeability, oil saturation, depth and thickness. Our analysis confirms that the lower the porosity, permeability, and oil saturation of the reservoir, the worse the performance of the operation. In other words, the lower the quality of the reservoir, the lower the oil rate, and the higher the SOR. Our analysis also shows that well performance (i.e., SOR), is predictable with a relatively high degree of accuracy (R2∼0.80) using log and core data via a neural network model. These results imply that the depth of the reservoir, gamma ray readings, and permeability are the most important determinants of the variation in SOR.

Keywords: Oil sands; SAGD (Steam-assisted gravity drainage); Neural networks; Regression trees; Steam to oil ratio (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215012396
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p2:p:1663-1670

DOI: 10.1016/j.energy.2015.09.029

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1663-1670