Valuing crop diversity in biodiesel production plans
Antonella Baglivi,
Giulia Fiorese,
Giorgio Guariso and
Clara Uggè
Energy, 2015, vol. 93, issue P2, 2351-2362
Abstract:
The problem of defining efficient and environmentally compatible short-term agricultural plans for biodiesel exploitation is dealt with in this paper with a multi-objective modelling framework. To optimally use local resources, the first phase of the plan consists in the analysis of land and climate features in order to evaluate which energy crop can be successfully grown. This phase is performed at local scale using GIS (geographic information system) data and software. The second phase consists in the formulation of a multi-objective mathematical programming problem. Using the land to be cultivated in each parcel with each crop as decision variables, we solve a three objectives problem: the maximization of the net energy produced, of the greenhouse gases avoided with respect to conventional fossil fuels and of the diversity of the energy crop mix. The last is quantitatively measured using a well-known biodiversity index, which allows to study the trade-off between a more varied crop mix and the other two objectives along the frontier of Pareto efficient solutions. The proposed methodology is applied to a region of Mato Grosso, Brazil, where biodiesel is produced from oleaginous crops.
Keywords: Energy crops; Land use; Optimization; Multi-objective nonlinear program; Pareto optimal solutions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215014486
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p2:p:2351-2362
DOI: 10.1016/j.energy.2015.10.080
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().