Effects of carbon dioxide in oxy-fuel atmosphere on catalytic combustion in a small-scale channel
Yueh-Heng Li,
Guan-Bang Chen,
Fang-Hsien Wu,
Hsiu-Feng Hsieh and
Yei-Chin Chao
Energy, 2016, vol. 94, issue C, 766-774
Abstract:
The effect of CO2 dilution on oxy-fuel reaction over catalytic surface is experimentally investigated in a small-scale channel in terms of heat transfer, chemical reactivity as well as interplay between hetero- and homogeneous reaction. There are two kinds of small-scale reactors, tubular reactor and channel reactor, respectively, used in this study. In the tubular reactor, the interaction between heterogeneous and homogeneous reaction on tubular platinum reactor are addressed based on the resulting surface temperatures of the tube and fuel conversion ratios. CO2 would absorb chemically-induced heat release of hydrogen, but in the meantime heat up the flowing mixture via radiative and convective heat transfer. In the channel reactor, the results demonstrate that the segmented catalyst with cavities has minimal oxygen concentration to hold catalytically stabilized thermal flame in a channel, and performs approximately complete fuel conversion. Beside, CO content in flue gas is increased in the case of segmented catalyst with cavities. It speculates that CO2 decomposes CO through the reaction of CO2+HCO + OH in gas phase in the vicinity of the catalyst surface, and the requested H radical and thermal energy are provided by the neighboring heterogeneous reaction.
Keywords: Oxy-fuel; Oxy-combustion; Catalytic combustion; Hydrogen; Catalyst (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215015923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:94:y:2016:i:c:p:766-774
DOI: 10.1016/j.energy.2015.11.042
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().