News-based sentiment and bitcoin volatility
Niranjan Sapkota
International Review of Financial Analysis, 2022, vol. 82, issue C
Abstract:
In this work, I studied whether news media sentiments have an impact on Bitcoin volatility. In doing so, I applied three different range-based volatility estimates along with two different sentiments, namely psychological sentiments and financial sentiments, incorporating four various sentiment dictionaries. By analyzing 17,490 news coverages by 91 major English-language newspapers listed in the LexisNexis database from around the globe from January 2012 until August 2021, I found news media sentiments to play a significant role in Bitcoin volatility. Following the heterogeneous autoregressive model for realized volatility (HAR-RV)—which uses the heterogeneous market idea to create a simple additive volatility model at different scales to learn which factor is influencing the time series—along with news sentiments as explanatory variables, showed a better fit and higher forecasting accuracy. Furthermore, I also found that psychological sentiments have medium-term and financial sentiments have long-term effects on Bitcoin volatility. Moreover, the National Research Council Emotion Lexicon showed the main emotional drivers of Bitcoin volatility to be anticipation and trust.
Keywords: Bitcoin; News sentiments; Natural language processing; Range-based volatility; HAR-RV (heterogeneous autoregressive realized volatility) (search for similar items in EconPapers)
JEL-codes: G11 G14 G17 G41 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521922001454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:82:y:2022:i:c:s1057521922001454
DOI: 10.1016/j.irfa.2022.102183
Access Statistics for this article
International Review of Financial Analysis is currently edited by B.M. Lucey
More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().