EconPapers    
Economics at your fingertips  
 

Investor sentiment indices based on k-step PLS algorithm: A group of powerful predictors of stock market returns

Ziyu Song and Changrui Yu

International Review of Financial Analysis, 2022, vol. 83, issue C

Abstract: We construct a group of new investor sentiment indices by applying a new dimension reduction technique called k-step algorithm which adopts partial least squares method recursively. With the purpose of forecasting the aggregate stock market return, the new group of investor sentiment indices performs a greater ability in predicting the market return than existing investor sentiment indices in and out of sample by adequately using the information in residuals and eliminating a common noise component in sentiment proxies. This group of new investor sentiment indices beats five widely used economic variables and still has a strong return predictability after controlling these variables. Moreover, they could also predict cross-sectional stock returns sorted by industry, size, value, and momentum and generate considerable economic value for a mean-variance investor. We find the predictability of this group of investor sentiment indices comes from its forecasting power for discount rates and market illiquidity.

Keywords: Investor sentiment; Return predictability; Partial least squares; Residual (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521922002733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002733

DOI: 10.1016/j.irfa.2022.102321

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002733