EconPapers    
Economics at your fingertips  
 

Bitcoin replication using machine learning

Richard D.F. Harris, Murat Mazibaş and Dooruj Rambaccussing

International Review of Financial Analysis, 2024, vol. 93, issue C

Abstract: Cryptocurrencies are characterized by high volatility and low correlations with traditional asset classes, and present an intriguing investment opportunity. However, their inherent risks and regulatory uncertainties make direct investment challenging for many investors. This paper addresses this challenge by proposing a replication framework that employs machine learning to create synthetic portfolios that replicate the risk-adjusted return profile and diversification benefits of Bitcoin, by far the largest cryptocurrency by market share. We show that the synthetic portfolios offer a compelling alternative to direct investment in Bitcoin, delivering superior risk-adjusted returns net of trading costs while mitigating the risks that are associated with holding Bitcoin directly. Furthermore, the synthetic portfolios provide better diversification benefits and lower tail risk.

Keywords: Portfolio replication; Cryptocurrencies; Bitcoin; Machine learning algorithms (search for similar items in EconPapers)
JEL-codes: G10 G11 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S105752192400139X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:93:y:2024:i:c:s105752192400139x

DOI: 10.1016/j.irfa.2024.103207

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:finana:v:93:y:2024:i:c:s105752192400139x