Risk management of Bitcoin futures with GARCH models
Zi-Yi Guo
Finance Research Letters, 2022, vol. 45, issue C
Abstract:
In this article, we investigate the quantitative risk management of Bitcoin futures by using the GARCH models. We first found that it is crucial to introduce a heavy-tailed distribution into the GARCH models to explain return volatilities of Bitcoin futures. Then, we compare the VaR estimates based on the parametric methods, namely the GARCH model with the normal distribution (GARCH-Normal) and the GARCH model with the normal inverse Gaussian distribution (GARCH-NIG), and the nonparametric method. Our results illustrate that although the VaR estimates based on the nonparametric method are overall accurate and even more accurate than the VaR estimates based on the GARCH-Normal model, the VaR estimates based on the GARCH-NIG model perform the best. Overall, we conclude that the GARCH-NIG model could generate accurate VaR estimates for the Bitcoin futures return series. In addition, we found that in contrast to Bitcoin cash, the return volatilities of the Bitcoin futures do not increase by more in response to positive shocks than in response to negative shocks.
Keywords: Bitcoin; Value-at-risk; Heavy-tailed distribution (search for similar items in EconPapers)
JEL-codes: C58 G13 G32 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612321002671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:45:y:2022:i:c:s1544612321002671
DOI: 10.1016/j.frl.2021.102197
Access Statistics for this article
Finance Research Letters is currently edited by R. Gençay
More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().