EconPapers    
Economics at your fingertips  
 

AE-ACG: A novel deep learning-based method for stock price movement prediction

Shicheng Li, Xiaoyong Huang, Zhonghou Cheng, Wei Zou and Yugen Yi

Finance Research Letters, 2023, vol. 58, issue PA

Abstract: This paper proposes a method named AE-ACG for stock price movement prediction. In AE-ACG, the convolutional neural network (CNN) and gated recurrent unit (GRU) are combined to design a base layer, which is embedded in the autoencoder (AE) framework, to efficiently extract features from financial time series data. Furthermore, skip connection links encoding and decoding to leverage hierarchical features. Attention mechanism (AM) also distinguishes the importance of historical data across periods. Extensive experiments demonstrated that the proposed model is effective in predicting price movements, showing advantages over some mainstream methods.

Keywords: Deep learning; Financial time series forecasting; Stock price movement; Autoencoder (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612323006761
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006761

DOI: 10.1016/j.frl.2023.104304

Access Statistics for this article

Finance Research Letters is currently edited by R. Gençay

More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006761