EconPapers    
Economics at your fingertips  
 

Exploring XAI techniques for enhancing model transparency and interpretability in real estate rent prediction: A comparative study

Ian Lenaers and Lieven De Moor

Finance Research Letters, 2023, vol. 58, issue PA

Abstract: Black-box artificial intelligence (AI) models are popular in real estate research, but their lack of interpretability raises concerns. To address this, explainable AI (XAI) techniques have been applied to shed light on these models. This paper presents a comparative study of six global XAI techniques on a CatBoost model for Belgian residential rent prediction. Results show that while some techniques offer substitute insights, others provide complementary perspectives on the model's behavior. Employing multiple XAI techniques is crucial to comprehensively understand rents drivers which contributes to transparency, interpretability, and model governance in the real estate industry, advancing the adoption of (X)AI.

Keywords: Explainable artificial intelligence techniques; CatBoost; Machine learning; Rent prediction; Residential real estate rent market (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612323006785
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006785

DOI: 10.1016/j.frl.2023.104306

Access Statistics for this article

Finance Research Letters is currently edited by R. Gençay

More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006785