EconPapers    
Economics at your fingertips  
 

Regression, multicollinearity and Markowitz

Roberto Ortiz, Mauricio Contreras and Cristhian Mellado

Finance Research Letters, 2023, vol. 58, issue PC

Abstract: This paper shows that the usual drawbacks of the Markowitz model (high optimal weights, high volatility and low out-of-sample performance) can be overcome by correcting for the multicollinearity of individual assets that directly affect the estimation of portfolio weights. That improves the stability, predictability and out-of-sample performance of the Markowitz model, allowing it to provide better results than the 1/n rule.

Keywords: Markowitz mean–variance optimization G11; Estimation of optimal portfolio weights G11; Financial econometrics C58; Multicollinearity C58 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612323009224
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323009224

DOI: 10.1016/j.frl.2023.104550

Access Statistics for this article

Finance Research Letters is currently edited by R. Gençay

More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323009224