Unlocking the power of the topic content in news headlines: BERTopic for predicting Chinese corporate bond defaults
Wenjin Tang,
Hui Bu,
Yuan Zuo and
Junjie Wu
Finance Research Letters, 2024, vol. 62, issue PA
Abstract:
This study explores the thematic content of news headlines and assesses their predictive power for corporate bond defaults. It establishes a data-driven framework, that emphasizes transparency and interpretability through the incorporation of explainable AI (xAI) techniques. The interpretable AI method, BERTopic, is applied to analyze news headlines from Jan. 1, 2014, to Aug. 31, 2021. A total of 18 economically inrerpretable topic measures are derived by combining similar topics among 78 original topics, offering insights into bond issuers’ operational behavior and associated risks. Integrating the BERTopic model, various machine learning prediction models, the SHapley Additive exPlanations (SHAP) approach, and feature combination approaches, this study uncovers the incremental information contributed by news headlines beyond financial ratios and economic variables. The inclusion of these topic measures significantly enhances the predictive performance of first-time corporate bond defaults within a 3-month horizon. Additionally, the robustness of news headlines’ information value is validated by extending the sample and employing an alternative study sample with differing credit risk scenarios, diverse markets, and even distinct news sources.
Keywords: Topic modeling; BERTopic; xAI; Corporate bond default; Credit risk evaluation (search for similar items in EconPapers)
JEL-codes: C53 G32 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612324000928
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:62:y:2024:i:pa:s1544612324000928
DOI: 10.1016/j.frl.2024.105062
Access Statistics for this article
Finance Research Letters is currently edited by R. Gençay
More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().