EconPapers    
Economics at your fingertips  
 

ESG performance and financial distress prediction of energy enterprises

Yang Song, Runfei Li, Zhipeng Zhang and Jean-Michel Sahut

Finance Research Letters, 2024, vol. 65, issue C

Abstract: In the current drive to cut global carbon emissions, energy companies are facing intensifying policy pressures. This study investigates the impact of ESG (Environmental, Social, Governance) performance on the risk of corporate financial distress in the energy sector. Using a tripartite methodology of sentiment, topic, and word frequency analysis, we measure the characteristics of texts of ESG reports. These ESG-related textual variables, combined with company carbon performance and other variables, are integrated into the CatBoost algorithm to predict financial distress. The empirical findings indicate that text words, topics and sentiments derived from ESG reports prove to be effective in forecasting financial distress in energy companies. Additionally, the CatBoost used in this study surpasses other models such as logistic regression and decision trees in predictive capability. This study demonstrates how incorporating textual analysis of ESG reports enhances the predictive accuracy for financial distress in energy companies, highlighting the important role of comprehensive ESG evaluation in financial risk assessment.

Keywords: Energy companies; Financial distress; ESG reports; Carbon performance; Catboost (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612324005762
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:65:y:2024:i:c:s1544612324005762

DOI: 10.1016/j.frl.2024.105546

Access Statistics for this article

Finance Research Letters is currently edited by R. Gençay

More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finlet:v:65:y:2024:i:c:s1544612324005762