How do the content, format, and tone of Twitter-based corporate disclosure vary depending on earnings performance?
Jongkyum Kim,
Jee-Hae Lim and
Kyunghee Yoon
International Journal of Accounting Information Systems, 2022, vol. 47, issue C
Abstract:
Using 86,891 tweets, from the official corporate Twitter accounts of 715 unique firms, this study examines whether and how managers strategically attract and distract investors’ attention from corporate news through Twitter. We find that firms with good earnings news use Twitter to post more earnings-related information directly, whereas firms with bad earnings news post more non-earnings-related information on Twitter. We further find that depending on earnings performance firms strategically choose the format of tweets (qualitative or quantitative) and the tone of earnings tweets (positive or negative) to attract investors’ attention to good news or distract investors’ attention from bad news. Our results are robust to difference-in-differences (DID), alternative sample periods, and different variable specifications. Our findings provide empirical evidence for investors and regulators regarding current practices in corporate information on Twitter.
Keywords: Strategic disclosure; Social media; Twitter (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1467089522000264
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ijoais:v:47:y:2022:i:c:s1467089522000264
DOI: 10.1016/j.accinf.2022.100574
Access Statistics for this article
International Journal of Accounting Information Systems is currently edited by S.V. Grabski
More articles in International Journal of Accounting Information Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().