EconPapers    
Economics at your fingertips  
 

Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory

Liu Shengli and Liang Yongtu

International Journal of Critical Infrastructure Protection, 2019, vol. 26, issue C

Abstract: The pipelines that transport hazardous liquids (e.g., petroleum and petroleum products) across cities or countries are critical to the energy-supply infrastructure, and they are crucial for the reliable and secure operation of a city. Estimating the occurrence rate of serious pipeline accidents with sparse data is a challenging problem in pipeline safety management because serious hazardous liquid pipeline accidents are caused by a particular multidimensional sequence of events. In this paper, complex network theory was employed to detect the temporal structure of pipeline incidents and reveal the nonlinear connections between major accidents and their precursors. A database of hazardous liquid pipeline incidents in the US between 2010 and 2018 collected by the Pipeline Hazardous Material Safety Administration (PHMSA) of the US Department of Transportation was transformed into a complex network via the visibility graph algorithm. The temporal structure of the pipeline incident time series for different years and different companies was explored by applying complex network analysis. The results show the scale-free property and small-world topology of the constructed networks and provide the rationale for applying the hierarchical Bayesian model to predict the occurrence rate of major accidents in a pipeline system when there is sparse data. The benefits of using the hierarchical Bayesian model for estimating the occurrence rate were illustrated by comparing it with three different methods. Furthermore, posterior predictive checks were performed to validate whether the results of the hierarchical Bayesian model are consistent with the real data. The result indicates that it is reasonable to apply the hierarchical Bayesian model to estimate the occurrence rate of serious pipeline accidents when there is sparse data. Finally, practical applications of the temporal structure of the incidents were proposed for improved pipeline safety management. Our results provide the underlying new insights needed to enhance quantitative analyses of pipeline incidents.

Keywords: Hazardous liquid pipelines; Complex networks; Visibility graph algorithm; Hierarchical Bayesian model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1874548219300277
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijocip:v:26:y:2019:i:c:s1874548219300277

DOI: 10.1016/j.ijcip.2019.100308

Access Statistics for this article

International Journal of Critical Infrastructure Protection is currently edited by Leon Strous

More articles in International Journal of Critical Infrastructure Protection from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijocip:v:26:y:2019:i:c:s1874548219300277