EconPapers    
Economics at your fingertips  
 

Industrial intrusion detection based on the behavior of rotating machine

Mohammad Safari, Elham Parvinnia and Alireza Keshavarz Haddad

International Journal of Critical Infrastructure Protection, 2021, vol. 34, issue C

Abstract: In this study, a new industrial intrusion detection method is introduced for the control system of rotating machines as critical assets in many industries. Data tampering is a major attack on the control systems which disrupts the functionality of the asset. Hence, our objective is to detect data manipulations in the system. We use the behavior of the rotating machine to propose new industrial intrusion detection for the control system of the rotating machine by machine learning techniques. The behavior is elicited by the data of sensors under all the conditions of the rotating machine operation. In this work, the nonlinear regression, novelty detection, outlier detection, and classification approaches are implemented to create behavioral model. On each implementation, online data are compared with the real data of behavior prediction model during the operation of the rotating machine to detect any abnormality. According to our experimental results, the accuracy of the behavioral models created by the One-classSVM novelty detection, k- Nearest Neighbor (kNN) outlier detection, decision tree classifier, k-Neighbors classifier, random forest classifier, and AdaBoost classifier is obtained as 0.98, 0.994, 0.999, 0.999, 0.999, and 0.999, respectively. The results indicate that the proposed industrial intrusion detection method is able to detect the data tampering attacks on the control system of the rotating machines very accurately.

Keywords: Cyber security; Industrial control system (ICS); Cyber physical system (CPS); Behavioral intrusion detection system; Rotating machine (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1874548221000160
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijocip:v:34:y:2021:i:c:s1874548221000160

DOI: 10.1016/j.ijcip.2021.100424

Access Statistics for this article

International Journal of Critical Infrastructure Protection is currently edited by Leon Strous

More articles in International Journal of Critical Infrastructure Protection from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijocip:v:34:y:2021:i:c:s1874548221000160